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LETTER TO THE EDITOR 

Dynamical behaviour of interacting twin boundaries in 
martensitic transformations 

Yoshihisa Enomoto 
Department of Physics, Faculty of Science, Nagoya University, Nagoya 464-01, Japan 

Received 13 June 1989 

Abstract. We study the dynamics of interacting twin boundaries in martensites on the basis 
of the one-dimensional continuum model. Applying the method recently developed by 
Kawasaki to the model, we derive for the first time the equation of motion of twin boundaries. 
The equation obtained is found to be more advantageous than the original model for 
considering the dynamical behaviour of twin boundaries. 

The dynamics of coherent alternating twins or domain structures are of considerable 
interest in structural and martensitic phase transitions [l, 21. The coexistence of a few 
distinct variants or twins of the product phase, formed within the parent phase, results 
in localised twin boundaries. It has been shown [3-51 that static solutions for a twin 
boundary (TB) and for a periodic array of TBS can be produced entirely in the framework 
of the Ginzburg-Landau-type model. Moreover, Falk has extended the model to the 
time-dependent one and obtained the solitary wave solution for the TB with stationary 
periodic shape and constant velocity [6]. 

These authors have, however, discussed only ideal solutions that describe a regular 
or periodic array of TBS. In the present Letter we thus consider a general situation where 
the positions of the TB are randomly arranged. By making use of virtual changes in the 
TRS, we reduce the equation of motion of the TBS from the one-dimensional Ginzburg- 
Landau-type model [4]. This method has been developed by Kawasaki for various 
topological singularities (e.g. domain walls and vortex lines) [7]. 

Recently Barsch and co-workers [8,9] have discussed the formation of a periodic 
twinning array. In order to stabilise such periodic TBS, they have considered the long- 
range interactions between the TBS mediated via the parent phase. The present work is 
in some manner complementary to that of Barsch and co-workers in the sense that we 
are concerned with very slow motion of the TBS, after almost completing their formations, 
due to short-range and weak interactions between the TBS. Such a process is known to 
be important in the late stage dynamics [7]. 

Consider an array of TBS parallel to the (110) plane. This structure may be described 
by an elastic displacement field u(x,  t )  in the [ l i O ]  direction and an associated shear- 
strain field e(x, t )  defined by 

e(x, t )  = (a/ax)u(x,  t )  (1) 
where x is in the [110] direction and t the time. The TBS in martensitic phase transitions 
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of Cu-Zn, Ag-Cd and Ni-A1 alloy systems have such a structure [ I ,  21. Following the 
notations of Falk [4], the equation of motion for the system is rewritten as 

ii(x, t )  = (d/ax)[-2(a2/ax2)e + (6 /6e) f (e ,  T)] (2) 

where a dot denotes the time derivative, Tthe temperature, andf(e, T )  the Landau free 
energy density defined by 

f(e, T) = e6 - e4 + ( T +  $)e2. (3) 

Note that all the above quantities are expressed in suitably rescaled units. Note also that 
here we have neglected external forces and friction effects. It is shown 141 that in this 
model a twin boundary solution can be obtained for T < 0. In fact, an isolated static TB 
solution between martensitic domains k e, (called a kink solution) is given by 

e,(x) = e, sinh[(x -x,)/z]{C+ sinh2[(x -X , ) /Z ] ) -~ ’~  

e,(T) = [l + (1 - 1 2 T ) ’ / 2 / 2 ] 1 ~ 2 / ~ 3  

C( T )  = (3eL - 1)/(2e’, - I) 

I/Z(T) = em(2e2, - I)’:~ 

(4) 

( 5 )  

(6) 

( 7 )  

where x, denotes the twin boundary position and z( T )  the twin boundary thickness, 
assumed to be sufficiently small. 

In the presence of many kinks or twin boundaries, as is shown in figure 1, super- 
position of an isolated static TB solution (4) is no longer stationary, but the TBS start to 
move due to interactions between the TBS. Hereafter positions of the TBS are numbered 
consecutively from left to right along the x axis. To include effects of neighbouring TBS 
for the ith TB, the profile of e(x ,  t )  near x, is approximated by [7] 

Differentiating (2) with respect to x and using (1) and (8), we find 

E [ - i j e i  +if,;,] = (d2/dx2)[-2exx + f ’ ( e ,  T ) ]  (9) 
I 

where the primes denote differentiation and e,, = (d ’/dx2)e. Introducing the one-dimen- 
sional Green function 

G(x,  x’) = - 1 ~ :  - X ’  1/2 (10) 

which satisfies (d2/ax2)G(x, x’) = - 6(x - x ’ ) ,  (9) is written as 

7 !”-I dx’ G(x, x’)( -2,ej’ ( x ‘ )  + i ;e ; , (x ’ ) )  = 2ex, - f ‘ ( e ,  T ) .  (11) 

Here we have ignored the arbitrary function A(x) which satisfies (d2/dx2)A(x) = 0 by 
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Figure 1. The strain field profile e(x, I )  for the one-dimensional case. The thickness of twin 
boundaries is z( T ) .  

way of an approximation. Contributions of this function A(.x) to the following result will 
be discussed elsewhere [lo]. We integrate (11) over x after multiplying by e,! (x) 

+” 
(-(e; , ei).fI +(e :  , e y ) i f )  = dx e: [2e,, -f’(e, T ) ]  

I 

with 

(A ,  B )  = dx j-y dx’ A ( x ) B ( x ’ ) .  (13) 
--cc 

Moreover, using equations ( l ) ,  (2) and (8) and integrating by parts, as well as 
[2(a2/dx2) - f ” ( e , ,  T)]e,’ = 0, the right-hand side of (12) becomes 

If the interactions are limited to be between adjoining TB pairs, (14) becomes a simple 
form as follows: 

(el’s A f J  = R ( X , + l  - x,) - R ( x ,  - x , - , )  

R(Xl - X I )  = - D(T)k,(x,) - e m 1  

D ( T )  = 16e,(e; - T - l) 4 .  

L: ( ( e : ,  e;>i, -(e; ,  e y > i : )  = R ( X , + ~  - x , ) - ~ ( x ,  - x , - ~ )  

(17) 

(18) 

(19) 

with 

Thus we have the equation of motion for the TB position 

(20) 
I 

where the driving force is the short-range interactions between adjoining TB pairs 
represented by the right-hand side of (20). To discuss the dynamical behaviour of TB, 
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(20) is more advantageous than (2). This is because (20) reduces the structure of the TBS 
to an assembly of the positions of TBS with an enormous reduction of information [ 7 ] .  

The above equation of motion (20) is, however, still difficult to handle. A con- 
siderable simplification is obtained if Ixi+l - xil/z @ 1. In this limiting case we obtain 

R(x) = D(T)(2C(T) + l)e, exp(-2x/z) (21) 

(e l ,  e ; )  = 2(-1)i-j+1e3xi -xi/  

(e! e!’) = 0. 
” I 

Then (20) reduces to 

2 (-1)’-j+1 1xi -x,l i j  = g { e x ~ [ - 2 ( x ~ + ~  -xi>/z] -exp[-2(xi -xi-l)/z]} (24) 
i 

with 

(25) g = 8(e2 m - T - 1 4)(2C(T) + 1). 

To discuss a deviation from the above simplification, we are now performing molecular 
dynamics simulations of (20) directly. The result, together with further details of the 
derivation of (20), as well as the relation between the present result and that of Barsch 
and co-workers, will be published in the future [lo]. 

The author would like to thank Professor K Kawasaki for useful discussions. 
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